Cycling probe technology with RNase H attached to an oligonucleotide.
نویسندگان
چکیده
A streptavidin-RNase H gene fusion was constructed by cloning the Thermus thermophilus RNase H coding sequence in the streptavidin expression vector pTSA18F. The gene was expressed in Escherichia coli, and the resulting fusion protein was purified to apparent homogeneity. The fusion protein was shown to have a molecular weight of 128 kDa and to consist of four subunits. Furthermore, heat treatment of the fusion enzyme showed that it was stable as a tetramer at 65 degrees C. The fusion enzyme was shown to have both biotin binding and RNase H catalytic properties. Using cycling probe technology (CPT), the fusion enzyme was compared to the native RNase H with a biotinylated probe at different ratios of probe:enzyme and varying amounts of synthetic target DNA. At a ratio of 1:1, the fusion enzyme was active in CPT, but the native enzyme was not; both enzymes were active at a 1:5000 ratio of probe:enzyme. The fusion enzyme was further tested using biotinylated and non-biotinylated probes and was shown to be active at a 1:1 ratio with the biotinylated probe but not with the non-biotinylated probe. These experiments show that through binding of the streptavidin-RNase H fusion enzyme to the biotinylated probe, the efficiency of the cycling probe reaction is enhanced.
منابع مشابه
Rapid solid-phase immunoassay for detection of methicillin-resistant Staphylococcus aureus using cycling probe technology.
A Cycling Probe Technology (CPT) assay with a lateral-flow device (strip) was developed for the detection of the mecA gene from methicillin-resistant Staphylococcus aureus (MRSA) cultures. The assay uses a mecA probe (DNA-RNA-DNA) labeled with fluorescein at the 5' terminus and biotin at the 3' terminus. The CPT reaction occurs at a constant temperature, which allows the probe to anneal to the ...
متن کاملColorimetric detection of the tuberculosis complex using cycling probe technology and hybridization in microplates.
Cycling probe technology (CPT) is a simple signal amplification method for the detection of specific target DNA sequences. CPT uses a chimeric DNA-RNA-DNA probe that is cut by RNase H when bound to its complementary target sequence. In this study, a hybridization assay was developed to detect biotinylated CPT products that result from the amplification of a Mycobacterium tuberculosis complex se...
متن کاملSequence-specific RNase H cleavage of gag mRNA from HIV-1 infected cells by an antisense oligonucleotide in vitro.
We have used a ribonuclease protection assay to investigate RNase H cleavage of HIV-1 mRNA mediated by phosphorothioate antisense oligonucleotides complementary to the gag region of the HIV-1 genome in vitro. Cell lysate experiments in H9 and U937 cells chronically infected with HIV-1 IIIB showed RNase H cleavage of unspliced gag message but no cleavage of spliced message which did not contain ...
متن کاملComparisons between Chemical Mapping and Binding to Isoenergetic Oligonucleotide Microarrays Reveal Unexpected Patterns of Binding to the Bacillus subtilis RNase P RNA Specificity Domain†
Microarrays with isoenergetic pentamer and hexamer 2'-O-methyl oligonucleotide probes with LNA (locked nucleic acid) and 2,6-diaminopurine substitutions were used to probe the binding sites on the RNase P RNA specificity domain of Bacillus subtilis. Unexpected binding patterns were revealed. Because of their enhanced binding free energies, isoenergetic probes can break short duplexes, merge adj...
متن کاملInitiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y.
rpsO mRNA, a small monocistronic mRNA that encodes ribosomal protein S15, was used to study aspects of mRNA decay initiation in Bacillus subtilis. Decay of rpsO mRNA in a panel of 3'-to-5' exoribonuclease mutants was analyzed using a 5'-proximal oligonucleotide probe and a series of oligonucleotide probes that were complementary to overlapping sequences starting at the 3' end. The results provi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 20 2 شماره
صفحات -
تاریخ انتشار 1996